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Abstract—Signal reconstruction from compressed, noisy ob-
servations is a ubiquitous challenge in various applications. To
address its ill-posed nature, a suitable prior of the underlying
signal is required. Generative adversarial networks (GANs)
emerge as a natural prior, enabling realistic reconstructions.
However, existing approaches either optimize a GAN conditioned
on the measurements from scratch or use pre-trained GANs
to find images that best fit real measurements. We propose
an alternative GAN-based method that, instead of sampling
directly from the signal distribution, generates low-dimensional
synthetic observations from the real ones. An adversarial self-
distillation strategy optimizes the GAN, extracting meaningful
signal information for synthetic measurement generation. These
samples form an augmented measurement set, improving the con-
ditioning of compressed sensing solvers, including model-based
and deep learning-based methods. We validate our approach on
MNIST with a binary sensing matrix for the single-pixel camera,
achieving significant improvements in ADMM, PnP-ADMM, and
Unrolled ADMM using generated measurements.

Index Terms—Compressive sensing, generative adversarial net-
works, self-distillation, inverse problems.

I. INTRODUCTION

Compressive sensing (CS) recovers a high-dimensional
signal from a few linear random or structured projections
thus reducing acquisition time and costs [1]. To recover
the underlying signal, some structural assumption (prior) is
included to solve the undetermined system of linear equations.
Particularly, this theory has been popularized in a wide range
of applications including wireless communications [2], [3],
radar [4], and imaging [5], [6]. The literature has focused
on developing accurate signal priors where the most common
choice is that the signal is compressible on a given basis [1].
Several priors have been imposed depending on the signal and
applications [7], [8]. Recent advances in deep learning (DL)
have revolutionized CS by enabling data-driven approaches
that can infer complex signal distributions, where deep neural
networks (DNN) have been designed to implicitly learn the
signal prior [9], [10] outperforming traditional hand-crafted
priors. With the rise of generative models like Generative Ad-
versarial Networks (GANs) [11], these have become effective
for recovery by accurately learning complex data distributions,
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impacting fields such as signal processing and computer vision
[12]–[15]. In CS, they provide implicit priors for recover-
ing high-dimensional signals x from limited measurements
y [12], [13]. In the context of CS, signals x ∈ Rn are
acquired through linear, coded, and noisy projections usually
modeled as y = Hx + η, where H ∈ Rm×n represents
the sensing matrix of the CS acquisition system, η ∈ Rm

represents additive Gaussian noise, and m denotes the number
of real measurements (m ≪ n). GAN-based approaches in
CS typically fall into two categories. One method employs
the range of a pre-trained GAN as a natural prior for the
signal [12], [13], [16], while another trains the generator and
discriminator from scratch by conditioning the generation on
the real measurements [14], [15]. Both methods leverage the
GAN’s ability to capture the underlying data distribution and
produce realistic reconstructions, although they often struggle
in low-measurement scenarios or when the sensing matrix is
poorly conditioned [17].

In this work, we propose an alternative GAN-based re-
covery method that, instead of directly generating the high-
dimensional signal x from real measurements y, estimates
a novel low-dimensional projection of x to guide recovery
methods and enhance performance. Our approach starts with
a baseline GAN recovery, producing an initial estimate of
the signal, which is then passed through a generator network
that maps it to a low-dimensional space. During training, the
same network projects the ground truth (GT) into this space,
enabling it to learn accurate projections while extracting ad-
ditional information from the GT, following a self-distillation
strategy [18]. Unlike conventional teacher-student setups [19],
self-distillation allows a model to refine its own outputs, with
techniques like multi-crop training helping capture both global
and local features [20]. Applied to CS recovery, this process
improves the learned prior, leading to better reconstruction
under limited measurements. We define the real and estimated
projections as augmented measurements, with GT projections
derived using a synthetic sensing matrix S, incoherent with
the real sensing matrix H, ensuring diversity and comple-
mentary information about x. This approach acts as a plug-in
enhancement for recovery methods. For example, in model-
based schemes, it improves the conditioning of the fidelity
term. Our contributions are the following:

1) A GAN-based method that estimates a low-dimensional
representation of x (synthetic measurements), providing
a plug-in enhancement for various CS solvers.



2) A self-distillation adversarial scheme to accurately esti-
mate synthetic measurements by learning a prior from
both ground truth and GAN-based estimations.

3) Experimental validation of synthetic measurements
using three reconstruction methods: i) model-based
ADMM [21], ii) plug-and-play (PnP) ADMM [22], and
iii) data-driven Unrolling ADMM [23].

II. COMPRESSED SENSING BACKGROUND

A. Model-based recovery
Classical CS recovery solves

x∗ ∈ argmin
x

f(x) + λh(x), (1)

where f(x) = ∥y−Hx∥22 measures data fidelity and λ weights
the regularizer h(x). We examine ADMM with a sparsity
prior h(x) = ∥x∥ [21], [24], and Plug-and-Play [22]. ADMM
decouples f(x) and h(x) via an auxiliary variable and dual
updates, but degrades when H is ill-conditioned.
B. Learning-based recovery

Data-driven recovery leverages large image datasets and
deep networks to learn a mapping Mθ : Rm → Rn. Its
parameters θ minimize the loss

θ∗ ∈ argmin
θ

Ex∼p(x)[L(Mθ(Hx),x)], (2)

capturing complex image priors. Here Mθ is implemented as
an unrolled network [23], [25], where each layer mimics one
iteration of a model-based solver with a trainable denoiser.
C. GAN-based recovery

GAN-based recovery approximates p(x) by a learned dis-
tribution pR. A generator R and discriminator Dx play a
min–max game: Dx must distinguish if an input image comes
from the real distribution x ∼ p(x) or the estimated distribu-
tion x̂ ∼ pR. The adversarial loss is

Lx
gan(R,Dx) = Ex,y∼p(x,y)

[
logDx(x,H

†y)
]
+

Ey∼p(y)

[
log(1−Dx(R(H†y),H†y))

]
. (3)

where H† = (H⊤H)−1H⊤ is the pseudoinverse of H, and
(x,y) ∼ p(x,y) with y = Hx. We add a consistency term

Lx(R) = Ex,y∼p(x,y)

[
∥x−R(H†y)∥1

]
(4)

for recovering x from y with R. Thus, the problem becomes

{R∗,D∗
x}∈argmin

R
argmax

Dx

−Lx
gan(R,Dx)+λxLx(R), (5)

where λx trades off adversarial realism and recovery fidelity.

III. AUGMENTED MEASUREMENTS WITH ADVERSARIAL
SELF-DISTILLATION

Our key insight is a GAN-based method to generate an
augmented measurement set for any CS solver. This set
follows the synthetic forward model

g = Sx, (6)

where g ∈ Rd represents the synthetic measurements, and
S ∈ Rd×n is the corresponding synthetic sensing matrix.

Fig. 1. Proposed method. The framework consists of two stages: Initial
Image Recovery and Synthetic Measurements Generation. Real measurements
y are mapped to a target signal x0 = R(H†y) and encoded to obtain
synthetic measurements g̃, while the GT is encoded with the same E to
obtain ĝ. An adversarial self-distillation scheme optimizes the models, refining
synthetic measurements for enhanced recovery. Discriminators Dx and Dg

evaluate whether reconstructed images and synthetic measurements are real or
generated, guiding the learning process toward more realistic representations.

By integrating both known and synthetic measurements, we
construct an augmented sensing matrix

A =

[
H
S

]
∈ R(m+d)×n, (7)

where m + d ≤ n and rank(A) ≤ min(m + d, n) ensuring
highly incoherent synthetic sampling.

The first stage of our method builds upon traditional GAN-
based image restoration, as described in Subsection II-C. We
start by using a rough estimate x ≈ x0 = R(H†y). Next,
we design an encoder network E : Rn → Rd that maps in-
formation from the image space to the synthetic measurement
space as g̃ = E(x0). The encoder is also used to compute
ĝ = E(x) using the GT x during training. To ensure the
generated samples align with real distributions, we employ two
discriminator models: Dx and Dg. These discriminators assess
whether an image x or synthetic measurement g is real or
synthetic. The proposed framework integrates two adversarial
losses to capture information from the image distribution
p(x) and the synthetic measurement distribution p(g). The
adversarial loss associated with p(x) is given in Eq. (3), while
the adversarial loss for p(g) is formulated as

Lg
gan(R, E ,Dg) = Ex,g∼p(x,g)

[
logDg(S

†g,x)
]
+

Ex,y∼p(x,y)

[
log(1−Dg(S

†E(R(H†y)),x))
]
+

Ex∼p(x)

[
log(1−Dg(S

†E(x),x))
]
, (8)

where p(x,g) represents the joint distribution for g = Sx.
This adversarial loss applies self-distillation over p(g), al-
lowing E to refine its mapping using both estimated and
GT samples, improving g estimation. The recovery model,
encoder, and discriminator are optimized to approximate p(g),
ensuring realistic and diverse generated samples. To further
refine the model, consistency terms (CTs) are introduced. The
signal CT from Eq. (4) enforces R to reconstruct x from
synthetic measurements g. Additionally, the measurement CT

Lg(R, E) = Eg,y∼p(g,y)

[
∥g − E(R(H†y))∥1

]
+

Ex,g∼p(x,g)

[
∥g − E(x)∥1

]
+

Ex,y∼p(x,y)

[
∥E(x)− E(R(H†y))∥1

]
,

(9)

ensures accurate synthetic measurement estimation while
maintaining consistency with the GT signal.



TABLE I
RECOVERY RESULTS COMPARING THE QUANTITY OF SYNTHETIC MEASUREMENTS FOR GAN-BASED RECOVERY. THE BEST PSNR, SSIM, FID,

AND LPIPS RESULTS ARE HIGHLIGHTED IN GREEN UNDERLINE , BOLD BLUE , AND TEAL UNDERLINE , BOLD ORANGE , RESPECTIVELY.

Compression ratio PSNR ↑ SSIM ↑ FID ↓ LPIPS ↓

d/n
m/n

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

0 (Baseline) 14.82 24.17 27.18 0.7430 0.9545 0.9768 10.6 5.49 4.46 0.0399 0.0078 0.0046

0.25 14.76 24.14 26.82 0.7402 0.9534 0.9746 9.51 5.45 4.91 0.0402 0.0077 0.0048

0.5 14.83 24.12 27.07 0.7432 0.9539 0.9758 10.2 6.02 3.22 0.0401 0.0080 0.0043
0.75 14.68 23.89 26.94 0.7392 0.9483 0.9751 8.64 8.11 3.90 0.0399 0.0082 0.0045

1−m/n 14.71 24.03 26.96 0.7394 0.9536 0.9757 10.5 8.67 4.71 0.0397 0.0082 0.0047

Finally, the overall optimization problem is formulated as

{R∗, E∗,D∗
x,D∗

g} ∈ argmin
R,E

argmax
Dx,Dg

[
− Lx

gan(R,Dx)

−Lg
gan(R, E ,Dg) + λxLx(R) + λgLg(R, E)

]
, (10)

where λx and λg balance the consistency terms.
The proposed method has several design criteria to take into

account. In this work, we employed random binary sensing
matrices, i.e., H ∈ {0, 1}m×n where each entry of the matrix
follows a Bernoulli distribution with p = 0.5. We chose a
synthetic matrix S from the same distribution.
The selection is based on the properties of this kind of matrix,
which has a high probability of full-row rank E[rank(A)] ≈
min(m+d, n) [26]. Nevertheless, more robust synthetic matrix
design methods can be used, which can be adapted from
existing sensing matrix optimization [27]–[29] with the facility
that this matrix is not limited by any physical constraint of a
real acquisition system. Additionally, one crucial aspect is the
choice of d as we can freely select this value since this is a
virtual sensing matrix. In the following section, we show that
this hyperparameter is crucial for obtaining a better recovery
of x with the augmented measurement set.

IV. EXPERIMENTS & RESULTS

The proposed method is evaluated using the Single-Pixel
Camera (SPC) system [30], which employs a random binary
sensing matrix A = [H⊤,S⊤]⊤ ∈ {0, 1}(m+d)×n. The evalua-
tion is conducted on the MNIST dataset, split into 48000 train-
ing, 12000 validation, and 10000 testing images, all resized to
32×32, thus n = 1024. The method is tested under various real

Algorithm 1 ADMM Algorithm
Require: A, y, ĝ, ρ > 0, K, µ, P(·)

1: b←
[
y⊤, ĝ⊤]⊤

2: x(0) ← A⊤b ▷ Initialization from backprojection
3: z(0), u(0) ← 0
4: for k = 1 to K do
5: x̃(k) ←

(
A⊤A + ρ I

)−1×
6:

[
A⊤b + µ

(
z(k−1) − u(k−1)

)]
. ▷ Fidelity step

7: z(k) = P
(
x(k) + u(k−1)

)
▷ Proximal step

8: u(k) = u(k−1) +
(
x(k) − z(k)

)
▷ Dual update

9: return z(K)

compression ratios (CRs) m/n = {0.01, 0.05, 0.1} and syn-
thetic CRs d/n = {0, 0.25, 0.5, 0.25, 1−m/n} to analyze the
trade-off between measurement reduction and reconstruction
quality. The proposed GAN framework is inspired by [31],
where R and E serve as U-Net-based generators [32]. The
key difference is that E includes an additional linear layer
that projects the penultimate feature map onto the synthetic
measurement space. Discriminators Dx and Dg employ a
patch-based architecture, producing a small feature map that
penalizes structural inconsistencies at the patch level [31].
Once trained, real and synthetic measurements are merged into
the augmented measurement set. For the GAN optimization,
we use the Adam optimizer [33], with a learning rate for the
generator and discriminator of 0.001 and 0.0008, respectively.
We apply a batch size of 256 samples and train for 200 epochs.
The method was implemented using the PyTorch Light-
ning framework [34]. This set is validated through ADMM-
based methods. Specifically, classical ADMM (P(·) is a
soft-thresholding operator in the DCT domain), PnP-ADMM
(P(·) is a pre-trained denoiser, specifically the Restormer [35]
implemented in the DeepInv library [36]). For these methods,
the number of iterations was set to 100 and the parameter
µ = 1. Unrolled ADMM, where P(·) is a convolutional
network learned for each iteration, was set to K = 5 stages
and trained for 200 epochs using Adam optimizer with a
learning rate of 0.001 and a ℓ2 loss function with optimization
problem in 2. We summarize the adaptation of those ADMM
families in the Alg. 1. Finally, we assess the proposed method
using consistency and generative metrics. PSNR and SSIM
[37] evaluate pixel-level fidelity and structural similarity, while
FID and LPIPS [38] measure distributional differences and
perceptual similarity in deep feature space.

A. Generative Self-Distilled Augmented Measurements results

We evaluate image recovery and synthetic measurement
estimation to assess the proposed method. Table I reports
recovery performance in PSNR, SSIM, FID, and LPIPS. The
baseline corresponds to the initial recovery method (Section
II-C) with d/n = 0. The proposed method achieves similar
PSNR and SSIM but outperforms the baseline in FID and
LPIPS, especially at the lowest CR (m/n = 0.01), indicating
a better approximation of p(x) in highly constrained scenarios.

Additionally, we compare synthetic measurements SR∗(y)
from the baseline with estimated ĝ using the squared ℓ2-



TABLE II
RECOVERY RESULTS COMPARING THE QUANTITY OF SYNTHETIC MEASUREMENTS FOR ADMM, PNP-ADMM, AND UNROLLED ADMM. THE BEST

PSNR RESULTS ARE HIGHLIGHTED IN GREEN UNDERLINE , WHILE THE BEST SSIM RESULTS ARE HIGHLIGHTED IN BOLD BLUE .

Compression
ratio

ADMM PnP-ADMM Unrolled ADMM

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑

d/n
m/n

0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1

0 (Baseline) 10.75 10.44 9.81 0.02 0.03 0.06 10.71 11.78 13.67 0.03 0.17 0.43 14.85 19.88 24.43 0.46 0.64 0.74
0.25 9.87 11.58 13.02 0.10 0.22 0.31 14.72 20.53 22.07 0.40 0.52 0.55 15.37 23.26 25.03 0.57 0.72 0.71

0.5 14.32 20.28 21.98 0.38 0.58 0.61 15.26 22.33 23.77 0.47 0.61 0.61 15.47 23.19 25.06 0.60 0.70 0.71

0.75 15.30 22.29 23.92 0.46 0.69 0.70 15.40 22.10 23.14 0.49 0.62 0.62 15.51 22.80 24.52 0.53 0.67 0.69

1−m/n 15.44 22.71 24.19 0.55 0.73 0.72 15.40 22.07 22.81 0.52 0.65 0.62 15.51 22.78 24.22 0.56 0.68 0.67

Fig. 2. Synthetic measurement consistency in terms of squared ℓ2-norm.
The comparison between the baseline described in Subsection II-C and the
proposed method is shown in the same color, with the same colors in clear
and dark modes representing the baseline and proposed method, respectively.

norm (Fig. 2). Results show improved consistency across all
scenarios, highlighting the potential of synthetic measurements
to enhance ADMM-based recovery with the augmented mea-
surement set, discussed in the next section.

B. ADMM-based recovery method results
We assess the effectiveness of the synthetic measurements

by evaluating ADMM algorithms, with results reported in Tab.
II. The baseline corresponds to the recovery performance of
each method using only the real measurements (d/n = 0).
Results are presented in terms of PSNR and SSIM, as these are
the most relevant metrics for assessing image recovery con-
sistency. The proposed method achieves higher performance
in highly constrained scenarios, particularly with classical
and PnP-ADMM recovery methods. The most challenging
case is Unrolled ADMM, where a slight improvement is
observed. This suggests that further enhancement in synthetic
measurement estimation is possible by refining the model
design and imposed priors, which will be explored in future
work. Quantitative results for two handwritten samples (4 and
6) are shown in Fig. 3. The proposed method outperforms the
baseline both quantitatively and qualitatively, as the baseline
fails to reconstruct the images due to insufficient real mea-
surements. The limitation in highly constrained scenarios is
effectively mitigated using the proposed approach.

V. DISCUSSION AND FUTURE WORK

Our encoder E , trained via adversarial self-distillation, pro-
duces synthetic measurements that outperform direct projec-
tions by leveraging learned priors beyond the limited-fidelity

Fig. 3. Two test samples of the MNIST dataset and their reconstruction
with ADMM-based recovery methods. d/n = 0 for the baseline.

signal x0. Future work should explore mutual-information
maximization to align synthetic and real measurement distri-
butions better, reduce artifacts, and improve robustness, along
with regularization strategies and formal guarantees across CS
scenarios. Although developed for CS, this framework also
applies to tasks like medical imaging, hyperspectral recon-
struction, and wireless channel estimation, where measurement
limitations degrade quality. Future research should investigate
synthetic measurement generation, domain-specific priors in
the encoder, and the transferability of synthetic encoders
across applications.

VI. CONCLUSIONS

We propose a generative adversarial network with self-
distillation for synthetic measurement augmentation. Unlike
traditional recovery methods that rely solely on real measure-
ments, our approach estimates additional synthetic measure-
ments and integrates them into the reconstruction process,
improving recovery algorithms. This augmentation mitigates
the limitations of low compression ratios, leading to more
accurate image reconstruction. Extensive experiments show
that our method produces synthetic measurements with a lower
squared ℓ2-norm error than the baseline. Incorporating these
into ADMM-based recovery methods significantly improves
performance, especially when real measurements are limited.
These findings highlight the potential of synthetic measure-
ments to enhance reconstruction quality.
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